Dose-dependent effects of focal fractionated irradiation on secondary malignant neoplasms in Nf1 mutant mice.

نویسندگان

  • Jean L Nakamura
  • Connie Phong
  • Emile Pinarbasi
  • Scott C Kogan
  • Scott Vandenberg
  • Andrew E Horvai
  • Bruce A Faddegon
  • Dorothea Fiedler
  • Kevan Shokat
  • Benjamin T Houseman
  • Richard Chao
  • Russell O Pieper
  • Kevin Shannon
چکیده

Secondary malignant neoplasms (SMN) are increasingly common complications of cancer therapy that have proven difficult to model in mice. Clinical observations suggest that the development of SMN correlates with radiation dose; however, this relationship has not been investigated systematically. We developed a novel procedure for administering fractionated cranial irradiation (CI) and investigated the incidence and spectrum of cancer in control and heterozygous Nf1 mutant mice irradiated to a moderate (15 Gy) or high dose (30 Gy). Heterozygous Nf1 inactivation cooperated with CI to induce solid tumors and myeloid malignancies, with mice developing many of the most common SMNs found in human patients. CI-induced malignancies segregated according to radiation dose as Nf1(+/-) mice developed predominately hematologic abnormalities after 15 Gy, whereas solid tumors predominated at 30 Gy, suggesting that radiation dose thresholds exist for hematologic and nonhematologic cancers. Genetic and biochemical studies revealed discrete patterns of somatic Nf1 and Trp53 inactivation and we observed hyperactive Ras signaling in many radiation-induced solid tumors. This technique for administering focal fractionated irradiation will facilitate mechanistic and translational studies of SMNs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and Cellular Pathobiology Dose-Dependent Effects of Focal Fractionated Irradiation on Secondary Malignant Neoplasms in Nf1 Mutant Mice

Secondary malignant neoplasms (SMN) are increasingly common complications of cancer therapy that have proven difficult to model in mice. Clinical observations suggest that the development of SMN correlates with radiation dose; however, this relationship has not been investigated systematically. We developed a novel procedure for administering fractionated cranial irradiation (CI) and investigat...

متن کامل

Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms.

Second malignant neoplasms (SMN) are therapy-induced malignancies and a growing problem in cancer survivors, particularly survivors of childhood cancers. The lack of experimental models of SMNs has limited understanding of their pathogenesis. It is currently not possible to predict or prevent this devastating late complication. Individuals with neurofibromatosis I (NF1) are at increased risk of...

متن کامل

Molecular and Cellular Pathobiology Genetically Mediated Nf1 Loss in Mice Promotes Diverse Radiation-Induced Tumors Modeling Second Malignant Neoplasms

Second malignant neoplasms (SMN) are therapy-induced malignancies and a growing problem in cancer survivors, particularly survivors of childhood cancers. The lack of experimental models of SMNs has limited understanding of their pathogenesis. It is currently not possible to predict or prevent this devastating late complication. Individuals with neurofibromatosis I (NF1) are at increased risk of...

متن کامل

Therapy-induced malignant neoplasms in Nf1 mutant mice.

Therapy-induced cancers are a severe complication of genotoxic therapies. We used heterozygous Nf1 mutant mice as a sensitized genetic background to investigate tumor induction by radiation (RAD) and cyclophosphamide (CY). Mutagen-exposed Nf1(+/-) mice developed secondary cancers that are common in humans, including myeloid malignancies, sarcomas, and breast cancers. RAD cooperated strongly wit...

متن کامل

Role of low level laser in ameliorating the damaging effects of gamma irradiation on mice liver

Background: Exposure to ionizing radiation is inevitable. Using of low-level laser therapy (LLLT) stimulates tissue repair and reduces inflammation. The objective of the present study aimed at evaluating the therapeutic efficacy of Helium-Neon (He-Ne) laser in stimulating the reparative processes in the liver of mice after whole body gamma-irradiation (WBγ-I). Materials and Methods: Two hundred...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 71 1  شماره 

صفحات  -

تاریخ انتشار 2011